Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism.

نویسندگان

  • Federica Accornero
  • Jop H van Berlo
  • Matthew J Benard
  • John N Lorenz
  • Peter Carmeliet
  • Jeffery D Molkentin
چکیده

RATIONALE Paracrine growth factor-mediated crosstalk between cardiac myocytes and nonmyocytes in the heart is critical for programming adaptive cardiac hypertrophy in which myocyte size, capillary density, and the extracellular matrix function coordinately. OBJECTIVE To examine the role that placental growth factor (PGF) plays in the heart as a paracrine regulator of cardiac adaptation to stress stimulation. METHODS AND RESULTS PGF is induced in the heart after pressure-overload stimulation, where it is expressed in both myocytes and nonmyocytes. We generated cardiac-specific and adult inducible PGF-overexpressing transgenic mice and analyzed Pgf(-/-) mice to examine the role that this factor plays in cardiac disease and paracrine signaling. Although PGF transgenic mice did not have a baseline phenotype or a change in capillary density, they did exhibit a greater cardiac hypertrophic response, a greater increase in capillary density, and increased fibroblast content in the heart in response to pressure-overload stimulation. PGF transgenic mice showed a more adaptive type of cardiac growth that was protective against signs of failure with pressure overload and neuroendocrine stimulation. Antithetically, Pgf(-/-) mice rapidly died of heart failure within 1 week of pressure overload, they showed an inability to upregulate angiogenesis, and they showed significantly less fibroblast activity in the heart. Mechanistically, we show that PGF does not have a direct effect on cardiomyocytes but works through endothelial cells and fibroblasts by inducing capillary growth and fibroblast proliferation, which secondarily support greater cardiac hypertrophy through intermediate paracrine growth factors such as interleukin-6. CONCLUSIONS PGF is a secreted factor that supports hypertrophy and cardiac function during pressure overload by affecting endothelial cells and fibroblasts that in turn stimulate and support the myocytes through additional paracrine factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative Physiology Placental Growth Factor Regulates Cardiac Adaptation and Hypertrophy Through a Paracrine Mechanism

Rationale: Paracrine growth factor-mediated crosstalk between cardiac myocytes and nonmyocytes in the heart is critical for programming adaptive cardiac hypertrophy in which myocyte size, capillary density, and the extracellular matrix function coordinately. Objective: To examine the role that placental growth factor (PGF) plays in the heart as a paracrine regulator of cardiac adaptation to str...

متن کامل

Cardiac growth and angiogenesis coordinated by intertissue interactions.

Cardiac hypertrophy and angiogenesis are coordinately regulated during physiological or adaptive cardiac growth, and disruption of the balanced growth and angiogenesis leads to contractile dysfunction and heart failure. Coordination of growth and angiogenesis is in part mediated by the secretion of angiogenic growth factors from myocytes in response to hypertrophic stimuli, which enables the va...

متن کامل

Cardiac Fgf21 synthesis and release: an autocrine loop for boosting up antioxidant defenses in failing hearts.

Fibroblast growth factors (Fgfs) are signalling proteins of 150–300 amino acids with diverse functions, mainly in development and metabolism. The human/mouse Fgf family comprises 22 members. Fgfs can be classified as intracellular, paracrine, and endocrine Fgfs by their action mechanisms. Among Fgfs, Fgf2, Fgf16, Fgf21, and Fgf23 have been shown to be cardiomyokines playing pathophysiological r...

متن کامل

Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy.

Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and ca...

متن کامل

Tomoregulin-1 prevents cardiac hypertrophy after pressure overload in mice by inhibiting TAK1-JNK pathways

Cardiac hypertrophy is associated with many forms of heart disease, and identifying important modifier genes involved in the pathogenesis of cardiac hypertrophy could lead to the development of new therapeutic strategies. Tomoregulin-1 is a growth factor that is primarily involved in embryonic development and adult central nervous system (CNS) function, and it is expressed abnormally in a varie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 109 3  شماره 

صفحات  -

تاریخ انتشار 2011